
Neural Networks 126 (2020) 143–152

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

SDARE: A stacked denoising autoencodermethod for game dynamics
network structure reconstruction
Keke Huang a,e, Shuo Li a, Penglin Dai b, Zhen Wang c, Zhaofei Yu d,e,∗

a School of Automation, Central South University, Changsha 410083, China
b School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
c Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi’an 710072, China
d Department of Computer Science and Technology, Peking University, Beijing 100871, China
e Peng Cheng Laboratory, Shenzhen 518055, China

a r t i c l e i n f o

Article history:
Received 22 September 2019
Received in revised form 17 January 2020
Accepted 9 March 2020
Available online 14 March 2020

Keywords:
Complex network
Network structure reconstruction
Deep learning
Stacked denoising autoencoder
Compressive sensing

a b s t r a c t

Complex network is a general model to represent the interactions within technological, social,
information, and biological interaction. Often, the direct detection of the interaction relationship is
costly. Thus, network structure reconstruction, the inverse problem in complex networked systems, is
of utmost importance for understanding many complex systems with unknown interaction structures.
In addition, the data collected from real network system is often contaminated by noise, which
makes the network structure inference task much more challenging. In this paper, we develop a new
framework for the game dynamics network structure reconstruction based on deep learning method.
In contrast to the compressive sensing methods that employ computationally complex convex/greedy
algorithms to solve the network reconstruction task, we introduce a deep learning framework that
can learn a structured representation from nodes data and efficiently reconstruct the game dynamics
network structure with few observation data. Specifically, we propose the denoising autoencoders
(DAEs) as the unsupervised feature learner to capture statistical dependencies between different
nodes. Compared to the compressive sensing based method, the proposed method is a global network
structure inference method, which can not only get the state-of-art performance, but also obtain the
structure of network directly. Besides, the proposed method is robust to noise in the observation
data. Moreover, the proposed method is also effective for the network which is not exactly sparse.
Accordingly, the proposed method can extend to a wide scope of network reconstruction task in
practice.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks are ubiquitous in social, biological and
engineering, such as communication networks, biological net-
works and WWW networks (Boccaletti, Latora, Moreno, Chavez,
& Hwang, 2006; Girvan & Newman, 2002; Li, Bu, Li, Liu, & Shi,
2016; Tanimoto, Brede, & Yamauchi, 2012; Wu, Zhao, Lü, Tang, &
Lu, 2016; Yu et al., 2009). In recent years, considerable attention
has been paid to the analysis of complex systems. For example,
biological scientists made use of gene regulatory networks to
understand certain chemical reaction mechanisms (Cussat-Blanc,
Harrington, & Pollack, 2015; Tang, Yu, & Kocarev, 2007). Social
scientists utilized the social network to study opinion evolution
and group behavior. Engineers used the complex network to
analyze the dynamics, such as information diffusion, epidemic
spreading and evolutionary game dynamics (Wang, Lai, Grebogi,

∗ Corresponding author.
E-mail address: yuzf12@pku.edu.cn (Z. Yu).

& Ye, 2011; Wang & Wu, 2018; Xu, Su, Zhang, Ren, & Shen, 2015).
It should be noted that these analyses rely on precise knowledge
of network structure, but we are often incapable of measuring
the network structures directly. The data-driven method, as an
alternative method that can infer the network structure from
some limited observable data, is raising (He, She, & Wu, 2013;
Perc & Grigolini, 2013).

Although the data-driven network structure reconstruction is
now becoming increasingly important in interdisciplinary fields,
it faces several major challenges. Firstly, the structural informa-
tion is implicit, which cannot be observed from the measurable
data. Secondly, as the complex network often consists of many
nodes, the dimension of the solution space of all possible struc-
tural configurations is extremely high. Thirdly, the data collecting
from the complex network is limited, which makes the inverse
problem, in general, an ill-posed problem. Fourthly, some no-
table factors, such as non-linearity, large noise, and lack of data,
increase the difficulty of the network structure reconstruction
task.

https://doi.org/10.1016/j.neunet.2020.03.008
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2020.03.008
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.03.008&domain=pdf
mailto:yuzf12@pku.edu.cn
https://doi.org/10.1016/j.neunet.2020.03.008


144 K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152

So far, some approaches have been proposed to address the
inverse problem to some extent (Han, Shen, Wang, & Di, 2015).
Roughly, these methods can be divided into three categories:
compressive sensing methods (Wang et al., 2011), phase space
methods (Napoletani & Sauer, 2008) and delay-coordinate em-
bedding methods (Packard, Crutchfield, Farmer, & Shaw, 1980).
Although the above-mentioned methods pave the way of network
structure reconstruction to some extent, accurate and robust
reconstruction of large complex networks is still a challenging
problem, especially given limited measurements contaminated by
noise or unexpected outliers.

Deep learning is an emerging field mainly concerned with
learning multiple levels of representation of data and coming up
with higher levels of abstraction in it (Deng, Yu, et al., 2014;
Goodfellow, Bengio, & Courville, 2016; LeCun, Bengio, & Hin-
ton, 2015; Schmidhuber, 2015). The pioneering work of solving
compressive sensing with deep learning is proposed by Mousavi,
Patel, and Baraniuk (2015). Inspired by these works, here we
proposed a stacked denoising autoencoder to incorporate the
underlying features of complex network, and then reconstruct
the complex network based on state data of each node, i.e. the
game strategy (cooperation or defection) of each agent at dif-
ferent times and the overall payoff (fitness) of each agent after
each round of dynamic game. Hereafter, we named the proposed
method as SDARE.

To be specific, we first design the stacked denoising autoen-
coder framework and bring the sparse constraint of the network
into the loss function. Then, we train the network with the
observation data collected from complex network system. Lastly,
we feed the learned framework with observation data to obtain
the original network structure. In order to verify the efficiency
of the proposed method, we use the artificial small-world net-
work and scale-free network, as well as an empirical network as
benchmarks to test the reconstruction performances. Here, the
empirical network mainly refers to the real complex network in
daily life, which is derived from artificial abstractions, such as
the Zachary’s karate club network, the Dolphin social network
and so on. Compared with the most commonly used compressive
sensing method, the proposed method shows high accuracy and
reliability, especially when there is little observation data. In
addition, the proposed method is robust to contaminated noise.
Moreover, it is also effective when the network structure is not
exactly sparse, which further extends the scope of application.

The rest of the paper is organized as follows. Section 2 intro-
duces the preliminaries of game dynamics in the network as well
as the compressive sensing based network structure reconstruc-
tion. In Section 3, we present the proposed method for network
structure reconstruction. The experimental results are presented
in Section 4 and concluding remarks are discussed in Section 5.

2. Preliminaries

In this section, we first introduce the game dynamics in the
network as well as the problem formulation of data-driven net-
work structure reconstruction. Then, we will give an outline
of compressive sensing. Finally, we explain how to solve the
compressive sensing problem with deep learning framework.

2.1. Game dynamics in networks

Here we introduce the game dynamics in networks. Typically,
the game dynamics in complex network consist of three basic
factors: the network structure model, the game model and the
strategy updating model. After defining these factors, the game
dynamics can evolve according to three steps. Firstly, all the
nodes are arranged in the networked system, and each node

occupies a node of the network. Then, all the nodes in the net-
work system interact with their direct neighbors according to
the structure of the network, and obtain the fitness based on
the game model. Lastly, all the nodes update their strategies
according to the strategy updating model.

For the complex network model, two artificial networks: the
scale-free network and the small-world network as well as some
empirical networks often used to study the game dynamics (Boc-
caletti et al., 2014; Huang, Zhang, Li, Yang and Wang, 2018). For
the game model, there have two common evolutionary game
models: the prisoner’s dilemma and snowdrift game (Christoph &
Michael, 2004; Perc, Gómez-Gardeñes, Szolnoki, Floría, & Moreno,
2013; Perc & Szolnoki, 2008, 2010). In this paper, we will use
the prisoner’s dilemma as the game model. In each round of the
evolutionary game, each node of network can choose one of the
two strategies: cooperation or defection, and obtain the fitness
based on the payoff matrix. Here, the payoff matrix of prisoner’s
dilemma is defined as follows:

P =

[
pcc pcd
pdc pdd

]
, (1)

where pcc and pdd represent the payoff of mutual cooperation and
mutual defection respectively, and the mixed choice of strategies
gives the cooperator the sucker’s payoff pcd and the defector
the temptation pdc . In addition, according to the definition of
prisoner’s dilemma, we have pdc > pcc > pdd > pcd. For example,
in the tth step, if node 1 and node 2 choose cooperation and
defection respectively, i.e. s1(t) = [1, 0]T and s2(t) = [0, 1]T , then
the payoffs of node 1 and node 2 in the tth step can be calculated
as follows:

u1 = sT1(t)Ps2(t) = [1, 0]
[
pcc pcd
pdc pdd

]
[0, 1]T = pcd

u2 = sT2(t)Ps1(t) = [0, 1]
[
pcc pcd
pdc pdd

]
[1, 0]T = pdc

. (2)

Similarly, we can get the overall fitness of node x in the tth step
as follows:

ux(t) =

∑
y∈Ωx

sTx (t)Psy(t), (3)

where node y is one of the neighbors of node x and Ωx is the
set of all neighbors of node x including itself, sx (t) and sy(t) are
the strategy of node x and node y at the tth step, and P is the
payoff matrix. During the strategy evolution, each node randomly
selects one of its direct neighbors for strategy updating. In other
words, there is no preference for the node to select a neighbor
for strategy imitation. The possible strategy-update rules include
the best-take-over rule, the Fermi rule, the proportional imitation
rule, and others (Huang, Liu, Zhang, Yang and Wang, 2018; Liu,
Yang, Huang, & Wang, 2019; Szabó & Fath, 2007). Since many
artificial networks and empirical networks are heterogeneous,
we used the proportional imitation rule in this paper (Santos &
Pacheco, 2005). Specifically, node x randomly chooses one of its
neighbors y and then adopts its strategy sx(t+1) with probability:

p(sx(t + 1) = sy(t)) =
uy(t) − ux(t)

Dk>

, (4)

where sx (t) is the strategy of x in the tth step, ux (t) is the
fitness of x in the tth step. D = pdc − pcd represents the largest
difference in the payoff matrix, and k> = max{kx, ky} with kx
represents the degree of node x. In general, given a typical com-
plex network structure, the game model as well as the strategy
updating rule model, we can record the time-series evolutionary
game data, which include the strategies and the fitness of all the
nodes.



K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152 145

Unfortunately, due to the high cost of measurement and the
limitation of measurement technology, the structure of com-
plex network is often unknown. For example, DNA microarrays
and mass spectroscopy have made the analysis of gene net-
works more feasible. However, it is not obvious how the data
acquired through such methods can be assembled into unam-
biguous and predictive models of these networks (Bansal, Gatta,
& Di Bernardo, 2006). Thus, how to infer the complex network
structure based on the record time-series evolutionary game data
is meaningful. As Ωx is often unknown in the network structure
inference problem, we rewrite Eq. (3) as:

ux(t) =

∑
y∈Ωx

axysTx (t)Psy(t). (5)

Here y represents all nodes in complex network. Typically, axy =

1 means there exist an edge between node x and node y, other-
wise, axy= 0. By recording the evolutionary game data from the
t1 step to the tM step, the network structure inference problem
can be converted to the problem of solving linear equations that
is defined as follows:⎡⎢⎣ux(t1)

...

ux(tM )

⎤⎥⎦ =

⎡⎢⎣ sTx (t1)Ps1(t1) . . . sTx (t1)PsN (t1)
...

...
...

sTx (tM )Ps1(tM ) · · · sTx (tM )PsN (tM )

⎤⎥⎦
×

⎡⎢⎣ax1
...

axN

⎤⎥⎦
(6)

For the sake of simplicity, Eq. (6) can be briefly described as
follows:

uall
x = Φxaallx , (7)

where M and N denote the length of the game dynamics time
series and the number of nodes in the whole complex network
respectively. uall

x ∈ RM and Φ ∈ RM×N are the game dynamic data
and augmentation of observation matrix of node x, and they can
be expressed as follows:

uall
x =

[
ux(t1) ... ux(tM )

]T
, (8)

Φx =

⎡⎢⎣ sTx (t1)Ps1(t1) . . . sTx (t1)PsN (t1)
...

...
...

sTx (tM )Ps1(tM ) · · · sTx (tM )PsN (tM )

⎤⎥⎦ , (9)

aallx =
[
ax1 ... axN

]T
. (10)

Apparently, the vector uall
x can be obtained directly from the

payoff data. In addition, the strategies time-series sx(tj), ∀x, j and
the payoff matrix P are known, the matrix Φx can be calculated
directly. Thus, the only unknown in Eq. (7) is aallx , which repre-
sents the adjacent vector of node x. Since complex network often
sparse, namely, the adjacent vector aallx is a sparse vector, so the
compressive sensing based method can be used to address this
problem (Wang et al., 2011). In a similar way, the structure of
the whole network Aadj = (aall1 , aall2 , . . . , aallN ) can be obtained by
solving uall

x = Φxaallx (x = 1, . . . ,N) respectively.

2.2. Compressive sensing

In this section, we will give an outline of compressive sens-
ing. Compressive sensing is mainly concerned with the inverse
problem of recovering a K -sparse signal x ∈ RN from a set of
under-sample linear measurements:

y = Φx + e, (11)

where y ∈ RM is the measurement vector. Φ ∈ RM×N is a sensing
matrix with M ≤ N . x ∈ RN is a K -sparse vector. Here, K -sparse
means that the non-zero elements in the vector is less than K . e
is the measurement error term.

Accordingly, the main problem of compressive sensing is to
recover the sparse vector x given the observation data (y,Φ). If
the measurement error term e is equal to 0, the mathematical
formulation of compressive sensing is defined as follows (Mei
et al., 2018):

minx ∥x∥0
s.t. y = Φx, (12)

where ∥x∥0 denotes the L0 norm of vector x, which represent the
sparsity of vector x. If the measurement error term e is not equal
to 0, the Lasso method can be used, and the objective function of
Lasso is defined as follows (Wang & Rahnavard, 2013):

min
x

(
∥x∥0+γ ∥y−Φx∥2

2

)
, (13)

where γ is a non-negative regularization parameter to balance
the weight of sparsity and least square term. The introduction
of least square term can make the solution more robust against
measurement noise.

Since the L0 norm was not convex, the optimization of
Eqs. (12)–(13) is NP-hard. Typically, two methods can be used
to get approximate solutions. The first one is the greedy method
such as the OMP (Orthogonal Matching Pursuit) algorithm (Blu-
mensath & Davies, 2009). The second method is the convex
relaxation method (Candes & Tao, 2006), of which the L1 norm
is the commonly used. To be specific, one can use ∥x∥1 to replace
∥x∥0 in Eqs. (12)–(13). Although the convex/greedy algorithms
can solve these problems to some extent, they may confront
the difficulties of high computational complexity and inaccurate
when applied to the network structure inference problem as the
measurement data is rare or the network is not exactly sparse.

2.3. Deep learning

Deep learning is an emerging field mainly based on construct-
ing a multiple layer hidden neural network model, and using
a large amount of data to train the network model to extract
the most representative feature. Until now, the deep learning
method has been applied widely in many researches, such as
image processing (He, Zhang, Ren, & Sun, 2016; Huang, Liu,
Van Der Maaten, & Weinberger, 2017; Krizhevsky, Sutskever, &
Hinton, 2012), computer vision (Chollet, 2017), speech recogni-
tion (Amodei et al., 2016; Graves, Mohamed, & Hinton, 2013),
and natural language processing (Devlin, Chang, Lee, & Toutanova,
2018; Mikolov, Chen, Corrado, & Dean, 2013) and so on. More
recently, deep learning has been used to recover sparse signals,
the main idea of which is to learn a representation from the train-
ing data use the stacked denoising autoencoders (SDA) (Mousavi
et al., 2015). In addition, the recurrent neural networks was also
used to deal with the problem of block-sparsity recovery (Lyu,
Liu, & Yu, 2019). Compared to the greedy iterative method, these
deep learning based methods have better performance. However,
they have to confront the following problems when they are used
to reconstruct network structure:

1. Is there a way to reconstruct the adjacent matrix of the net-
work globally, instead of reconstructing the adjacent matrix
column-by-column locally?

2. How to learn the nonlinear mapping from the game dynam-
ics data of the network to the network adjacent matrix Aadj
from the training data?

3. Training a neural network often needs a lot of data, how to
produce a large amount of training data with good quality
to ensure the network reconstruction performance?



146 K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152

In the following section, we will propose the SDARE method,
which can learn the mapping from the game dynamics data of all
nodes to the network adjacent matrix Aadj directly and solve the
three problems discussed above.

3. SDARE: SDA for network structure reconstruction

In this section, the SDA method is proposed to reconstruct
the network structure. We will address the above three problems
sequentially.

First, we discuss the framework for global network structure
reconstruction problem. With the deep learning based signal
recovery method, the trained network can map the observation
data y to the signal x. As Eq. (7) indicates, one deep network
is needed to learn the relationship between the game dynamics
data uall

x and the adjacent vector aallx of node x. As the complex
network contains N nodes, we need to train N deep networks to
reconstruct the complex network. In order to globally reconstruct
the network structure, we should convert the adjacent vector
reconstruction problem to the adjacent matrix reconstruction
problem. Inspired by the work (Huang, Wang, and Jusup, 2018),
we flatten the adjacent matrix Aadj into a vector vec

(
Aadj

)
, and

the relationship between the game dynamic data and the vector
can be rewritten as:

uall
= Ψ vec

(
Aadj

)
, (14)

where the game dynamic data uall
∈ RMN and augmentation of

observation matrices Ψ ∈ RMN×N2
are expressed as follows:

uall
= [(uall

1 )T ... (uall
N )T ]T , (15)

Ψ =

⎡⎢⎣Φ1 O ... O
O Φ2 ... O
... ... ... ...

O O ... ΦN

⎤⎥⎦ . (16)

Based on these definition, we can infer the adjacent matrix glob-
ally with the data

(
uall,Ψ

)
.

Now we discuss how to learn a nonlinear mapping from
the game dynamics data uall of the network to the network
adjacent matrix Aadj from the training data. We propose a three-
layers stacked denoising autoencoder to address this problem.
The schematic diagram of SDA method is shown in Fig. 1. Specif-
ically, the SDA consists of three denoising autoencoder. It takes
the benefits vector of each node during all rounds of evolutionary
game as the input, thus the number of neurons in the input layer
is Num = LDN , where LD is the length of the recorded time series
and N is the number of nodes in the network. The second layer is
a scale layer, which can scale the data of the input layer and speed
up gradient descent. The scale layer is followed by two hidden
layers and an output layer, each of which is a hidden layer of a
denoising autoencoder (see the left part of Fig. 1). These hidden
layers can be formulated as:

yi = σ (Wixini + bi), (17)

where xini is the input layer of the ith denoising autoencoder,
Wi and bi is the weight matrix and bias vector of the hidden
layer, and σ (·) is the activation function, which is a sigmoid
function. To ensure consistency between the input layer and
output layer of a denoising autoencoder (DA), the output layer
can be represented as:

x̃i = σ (WT
i yi + bT

i ), (18)

with x̃i denoting the output layer of DA, yi is the output of the
hidden layer. For each denoising autoencoder, we need to pre-
train it in unsupervised manner with the loss function of mean
squared error (MSE):

L(Θ) = argmin
Θ

̃xi − xini
 , (19)

Fig. 1. The schematic diagram of SDA for reconstructing the network based on
the game dynamic data, which consists of three DAE. The parameters of the
coding layer of the three trained DAEs are assigned to hidden layers and output
layer of SDA.

where Θ =
{
Wi, bi,WT

i , b
T
i

}
is the set of parameters.

After the unsupervised pretraining, we are able to stack the
three DAs and fine-tune them to train the final SDA. First, we
use the hidden layer of the first denoising autoencoder as the
input to the second autoencoder. Then we take the hidden layer
of the second autoencoder as the input to the third autoencoder.
Finally, we take the hidden layer of the third autoencoder as
the output layer of the entire stacked denoising autoencoder.
One should note that each layer of the SDA used for sparse
recovery either has input size of N2 (the ambient dimension of
the original network) and output size of Num (the dimension of
the measurement vector) or vice versa (Mousavi et al., 2015).
Therefore, these three hidden layers can be formulated as:

y1 = σ (W1xin + b1),
y2 = σ (W2y1 + b2),
x̃out = σ (W3y2 + b3),

(20)

where xin ∈ RNum is the output of the scale layer, W1 ∈ RN2
×Num ,

W2 ∈ RNum×N2
,W3 ∈ RN2

×Num and b1 ∈ RN2×1
, b2 ∈ RNum×1, b3 ∈

RN2
×1 are the paraments of the stacked denoising autoencoder.

As with the autoencoder, we need to ensure that the output of
the neural network is as much as possible the desired goal, so
the loss function of the SDA was defined as follows:

L(Θ ′) = argmin
Θ ′

{̃xout − xpre
2
2 + λ∥̃xout∥1

}
, (21)

where Θ ′
= {W1,W2,W3, b1, b2, b3} is the set of parameters,

x̃out is the output of the SDA, xpre is the expected target result, and
λ is the penalty term parameter. On the basis of pre-training, we
fine-tune the whole network by using Adamoptimizer (Kingma &
Ba, 2014) to minimize the loss function in Eq. (21).

The last question is how to generate training data and test data
to ensure the performance of network reconstruction. According
to Section 2, given a fixed measurement matrixΨ and an adjacent
matrix Aadj, we can obtain the observation data uall according to
Eq. (14). Consequently, we can use the k pairs data consisting of
the original networks and their benefits matrices as the training



K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152 147

Fig. 2. A schematic diagram of two artificial network, (a) the scale-free network,
(b) the small-world network.

data Dtrain = {
(
(uall)1, (vec(Aadj))1

)
,

(
(uall)2, (vec(Aadj))2

)
, . . .,(

(uall)k, (vec(Aadj))k
)
}. Based on the training data, we can learn a

nonlinear mapping from the game dynamic data uall to the vector
vec(Aadj). Then we use the test data (uall)test of the network that
needs to be reconstructed as the input. To sum up, the generation
of training data and test data was stated in detail in Algorithm 1.

Algorithm 1. Generation of training data and test data
Input: The original network Aadj; the number of training
sample k; the payoff matrix P;
the length of measure time M; the network size N
Initialization: The initial measure epoch m = 1; the initial
iteration l = 1
While m ≤ M do
Step 1: Initialize the different strategy for each node in
network Aadj
Step 2: Using Eqs. (2) and (3) to calculate the current game
benefits ux (m) for each node
Step 3: Update the strategy of each node in the next round
game dynamic according to Eq. (4)
end while
Step 4: Calculate the observation matrix Ψ and the benefit
vector

(
uall

)
test of the network Aadj according to Eqs. (5)–(10)

While l ≤ k do
Step 5: Generate network

(
Aadj

)
l with the same degree of

distribution as the original
network Aadj
Step 6: Convert the network matrix

(
Aadj

)
l to the vector(

vec
(
Aadj

))
l through straigh-

tening
Step 7: Calculate the benefits vectors

(
uall

)
l of network(

vec
(
Aadj

))
l through Eq. (14)

end while
Output:The test set Dtest =

{(
uall

)
test ,

(
vec

(
Aadj

))
test

}
; the

training set
Dtrain = {

(
(uall)1, (vec(Aadj))1

)
,
(
(uall)2, (vec(Aadj))2

)
,

...,
(
(uall)k, (vec(Aadj))k

)
}

According to these steps, a collection of game dynamics data
Ũ =

{
(uall)1, (uall)2, . . . , (uall)k

}
and the corresponding networks

Ã = {
(
vec

(
Aadj

))
1,

(
vec

(
Aadj

))
2, . . . ,

(
vec

(
Aadj

))
k} are obtained.

The whole training set can be obtained by combining uall and
the corresponding vec

(
Aadj

)
. After that we can train a SDA with

the game dynamics data as the input and adjacent vector as the
output. Apparently, we can reconstruct the entire network Aadj
directly with the SDA. The specific algorithm process is shown in
Algorithm 2.

Algorithm 2. Structure reconstruction of the game dynamics
network based on the SDA
Input: The testing data set

(
uall

)
test ; the training data set

Dtrain = {
(
(uall)1, (vec(Aadj))1

)
,
(
(uall)2, (vec(Aadj))2

)
, ...,(

(uall)k, (vec(Aadj))k
)

};
the training epoch E; the pre-train learning rate lpre; the
fine-tune learning rate lfine
Initialization: parameters of three denoising autoencoder;
the initial training epoch e = 1
Step 1:Pre-trained three denoising autoencoder
Using

(
uall

)
train as the input xin of the first denoising

autoencoder to obtain the output y1;
then using y1 as the input of the second denoising
autoencoder to obtain the output y2; fina-
lly, using y2 as the input of the last denoising autoencoder to
obtain the output x̃out
While e ≤ E do
Using Eq. (19) to minimize the mean square error between
the output of the denoising autoencoder and the output of
the denoising autoencoder for every denoising autoencoder
to train three denoising autoencoder
end while
Step 2: Assign the encoder layer parameters of the three
trained denoising autoencoder to
the first three layers of the SDA
Step 3: Fine-tuning
Using

(
uall

)
train as the input of the SDA to obtain the output

x̃out of the entire SDA
While e ≤ E do
Using Eq. (21) to minimize the mean square error between
the output x̃out of the entire SDA
and the train data

(
vec(Aadj)

)
train to train the SDA;

end while
Step 4: Using

(
uall

)
test as the input of the trained SDA to

obtain the output vec
(
Aadj

)′, and convert the vector
vec

(
Aadj

)′ into the adjacent matrix Aadj
′

Output:The adjacent matrix Aadj
′ of complex network that

need to be inferred

4. Simulation results

In this section, we first test the performance of the proposed
method with two artificial networks: a scale-free network (Santos
& Pacheco, 2005) shown in Fig. 2(a) and a small world net-
work (Watts & Strogatz, 1998) shown in Fig. 2(b). Then the
measurement noise is taken into account to verify the robustness
of the method. At last, we scale up the model to solve the
structure reconstruction problem of an empirical network.

4.1. Evaluation metrics for network reconstruction

Network structure reconstruction can be viewed as a binary
classification problem with extremely unbalanced classes, that is,
judging whether the edge exists or not. As the network is com-
monly sparse (most of the edges do not exist), a naive algorithm
predicting all edges non-existed can still achieve high accuracy
without reconstructing any edge. Thus two standard performance
measures, the receiver operating characteristic (ROC) curve and
the precision–recall (PR) curve (Davis & Goadrich, 2006), are used
here to evaluate the performance for different methods. Besides,
the area under ROC curve (AUROC) and the area under PR curve
(AUPR) are used as aggregate indicators of the performance of the
proposed algorithm. In addition, since the length of the recorded
time series (LD) is an important index for evaluating the efficiency



148 K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152

Fig. 3. AUPR and AUROC curves evaluating the performance of SDARE for a scale-free network (a) and a small-world network (b) without noise. Network size N = 10.
High indexes indicate a strong capability of the proposed method in reconstructing the 10-nodes scale-free network and small world network without noise.

of the proposed method, we added a new parameter data rate, the
ratio of the length of the time-series data to the number of nodes
RD =

LD
n , to evaluate the performance of the proposed method.

4.2. Reconstruct artificial networks without noise

We first test our method on the scale-free network and small-
world network of 10-nodes respectively, and then scale up to
25-nodes. Here the proposed method is compared with the most
commonly used compressive sensing method, which is called L1
for short. For networks with different nodes, we use different
numbers of training data to train the networks. Specifically, for
the network of 10 nodes, 2000 pieces of data are used to train
the SDA. Here the learning rates for pre-training and fine-tuning
are set to 0.01, and the number of epochs is set to 100. For the
network of 25 nodes, 10000 training data are used to train the
SDA. The learning rates for pre-training and fine-tuning are set
to 0.01 and 0.001 respectively, and the number of epochs is set
to 200.

Fig. 3 illustrates the experimental results of reconstructing
the scale-free network and the small-world network with 10
nodes. When the data rate RD = 0.1, the AUPR and AUROC of
SDARE are 20% and 28% higher than that of the L1 method in
the scale-free network reconstruction respectively. Similarly, for
the small-world network reconstruction, the AUPR and AUROC
of SDARE are 29% and 32% higher than that of the L1 method.
More importantly, when the data rate RD = 0.6, the AUPR and
AUROC of SDARE both reached 1.0 for the small-world network
and the scale-free network reconstruction. This means the SDARE
can reconstruct the networks accurately, which is much better
than the L1 method.

Then we scale up the results to the networks with 25-nodes,
which is shown in Fig. 4. The reconstruction results are similar
to that of the networks with 10-nodes. SDARE is much more
accurate and efficient than the L1 method for all the data rate.
Even when the data rate is very small (such as 0.1), the SDARE

can get good performance (the AUPR is above 0.7 and the AUROC
is above 0.8).

Fig. 5 shows how the structure identification accuracy of a
scale-free network changes with respect to the number of train-
ing data. Although an unstable phenomenon occurs due to the
randomness of the experiment, it can be seen from Fig. 5 that the
performance of SDARE is getting better and better as the amount
of data increases. This means if we have enough training data, we
can learn the accurate mapping from the game dynamics data to
the adjacent vector.

In order to test the stability of our method to different train-
ing/test set partitioning, we reconstruct the scale-free network
of 10 nodes by dividing the data into different training set and
test set. Here we generate 2000 pieces of data for the scale-
free network with RD = 0.5. In each round of experiment, we
randomly choose 1900 pieces of data as the training set and the
rest data as the test set. The experiment is repeated six times
and the results are shown in Fig. 6. It can be seen that the
AUROC is basically stable at about 0.90, and the AUPR is stable
at about 0.95. Therefore, our method has stable performance for
different training/test set partitioning. In order to further verify
the stability of the proposed method under different data rate,
we selected 10 samples as the test set and 1990 samples as the
training set. Fig. 7 shows that our method has good stability.
AUROC and AUPR increase when the data rate increases. It also
can be seen that both AUROC and AUPR are above 0.8. There-
fore, the proposed method has stable performance for different
training/test set partitioning and data rate.

4.3. Reconstruct artificial networks with noise

In practice, the measurements usually contain noise, here
we also carried out experiments on the data with noise. The
observational noise is assumed to follow Gaussian distributed
n ∼ N

(
0, σ 2

N

)
, with σN denoting the standard deviation of the

noise. We add the Gaussian noise to the measurement data, and
then reconstruct the network through the SDA trained by the



K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152 149

Fig. 4. AUPR and AUROC curves evaluating the performance of SDARE for a scale-free network (a) and a small-world network (b) without noise. Network size
N = 25. The proposed method shows good performance for 25-nodes scale-free networks and small world networks.

Fig. 5. The AUPR and AUROC of the SDARE method with respect to the number
of training dataset without noise. Network size N = 25, data rate RD = 0.4. As
the number of training dataset increases, the reconstruction performance of the
proposed method increases.

noiseless data. Fig. 8 shows how the area under curve changes
with the increase of noise amplitude σN . One can find that even
when the noise amplitude σN = 0.8, the AUROC is still higher
than 0.85 and the AUPR is still higher than 0.73. It is worth
noting that the SDARE model is trained by the noiseless data, thus
we can conclude that our method is robust against the strong
observational noise.

We also compare the proposed method to the Lasso method
on the evolutionary game data that are contaminated with noise.
Here the network structure models include scale-free network

Fig. 6. The boxplots of scale-free network with different partitions. Network size
N = 10, RD = 0.5. The proposed method has stable performance for different
training/test set partitioning.

Fig. 7. The boxplots of scale-free network with different data rate. Network size
N = 10. The proposed method has stable performance for different data rate.

and small-world network. Different from the last experiment,
we trained the network with noisy data and test on noisy data.
As shown in Figs. 9 and 10 , the AUPR and AUROC of SDARE



150 K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152

Fig. 8. SDARE is robust against strong noise in a scale-free network. Network
size N = 25, data rate RD = 0.4. High indexes of network reconstruction against
strong noise perturbations indicate the robustness of the proposed method.

are higher than the Lasso method for both scale-free and small-
world networks. When the data rate is above 0.3, the AUPR is
larger than 0.75 for both the scale-free network and small-world
network, and the AUROC is larger than 0.9. All these results show
that our method can also get good performance even when the
measurement data are contaminated with noise.

4.4. Reconstruct empirical networks

Lastly, the proposed SDARE method is testified for the struc-
ture reconstruction of an empirical network: the Zachary’s karate
club network (Zachary, 1977). Here, the Zachary’s karate club
network captures 34 members of a karate club, documenting

pairwise links between members who interacted outside the
club. One should note that there is only one actual network that
needs to be tested. In order to train the SDA, we generate 15000
networks with the same degree distribution as Zachary’s karate
club network. Here the learning rates for pre-training and fine-
tuning are set to 0.001 and the number of training epoch is set to
200. We carry out our experiments for both noisy and noiseless
measurements data.

The results of structure identification for Zachary’s karate club
network are shown in Fig. 11. Although our method has similar
performance to L1 and Lasso when data rate is high, it is better
than these two methods when data rate is low. Besides, it still
has high reconstruction performance for noisy data. All these sim-
ulations indicate that our method can reconstruct the empirical
network with satisfactory results.

5. Conclusion

In this paper, the SDA is proposed to reconstruct the network
structure based on the evolutionary game data. It can learn the
mapping between the local game dynamic data and the global
network structure. Through extensive experiments, we prove that
the proposed method outperform the previous methods based on
compressive sensing, and it can also maintain good performance
when the data rate is small. It is worth noting that, although
the proposed method is tested for the game dynamics on the
small-world network, the scale-free network and the Zachary’s
karate club network, it can also be applied to both more complex
network structures and other temporal dynamics (Li, Wu, Liu, Lu,
& Guo, 2015; Shen, Wang, Fan, Di, & Lai, 2014). In the future,
we will explore how to absorb distributed learning into our
framework to reconstruct large-scale complex network.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Fig. 9. The proposed method is robust against strong noise. PR and ROC curves for reconstructing a scale-free network (a) and a small-world network (b). Network
size N = 10, standard deviation of noise σN = 0.10. High indexes of network reconstruction against strong noise perturbations indicate the robustness of the proposed
method in 10-nodes scale-free and small world networks.



K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152 151

Fig. 10. The proposed method is robust against strong noise. PR and ROC curves for reconstructing a scale-free network (a) and a small-world network (b). Network
size N = 25, standard deviation of noise σN = 0.10. The proposed method maintains good performance and robustness for 25-nodes scale-free and small-world
networks with noise.

Fig. 11. AUPR and AUROC curves for structure identification of Zachary’s karate club network without noise (a) and with noise (b), Noise amplitude σN = 0.10. The
proposed method shows good reconstruction performance and robustness to noise.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (Grants No. 61703439, 61806011,
61802319, 61860206014, 61621062, U81961138010), in part by
the Natural Science Foundation of Hunan Province, China (Grant
No. 2019JJ50777), in part by the Innovation-Driven Project of

Central South University, China (2019CX020) and in part by the
111 Project, China (B17048).

References

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., et
al. (2016). Deep speech 2: End-to-end speech recognition in english and
mandarin. In Proceedings of the 33rd International Conference on Machine
Learning (pp. 173–182).

http://refhub.elsevier.com/S0893-6080(20)30085-X/sb1
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb1
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb1
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb1
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb1
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb1
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb1


152 K. Huang, S. Li, P. Dai et al. / Neural Networks 126 (2020) 143–152

Bansal, M., Gatta, G. D., & Di Bernardo, D. (2006). Inference of gene regulatory
networks and compound mode of action from time course gene expression
profiles. Bioinformatics, 22(7), 815–822.

Blumensath, T., & Davies, M. E. (2009). Iterative hard thresholding for
compressed sensing. Applied and Computational Harmonic Analysis, 27(3),
265–274.

Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J.,
Romance, M., et al. (2014). The structure and dynamics of multilayer
networks. Physics Reports, 544(1), 1–122.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex
networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308.

Candes, E. J., & Tao, T. (2006). Near-optimal signal recovery from random
projections: Universal encoding strategies?. IEEE Transactions on Information
Theory, 52(12), 5406–5425.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolu-
tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 1251–1258).

Christoph, H., & Michael, D. (2004). Spatial structure often inhibits the evolution
of cooperation in the snowdrift game. Nature, 428(6983), 643.

Cussat-Blanc, S., Harrington, K., & Pollack, J. (2015). Gene regulatory network
evolution through augmenting topologies. IEEE Transactions on Evolutionary
Computation, 19(6), 823–837.

Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and
ROC curves. In Proceedings of the 23rd International Conference on Machine
Learning (pp. 233–240). ACM.

Deng, L., Yu, D., et al. (2014). Deep learning: methods and applications.
Foundations and Trends R⃝ in Signal Processing, 7(3–4), 197–387.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Girvan, M., & Newman, M. E. (2002). Community structure in social and
biological networks. Proceedings of the National Academy of Sciences of the
United States of America, 99(12), 7821–7826.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing (pp. 6645–6649). IEEE.

Han, X., Shen, Z., Wang, W.-X., & Di, Z. (2015). Robust reconstruction of complex
networks from sparse data. Physical Review Letters, 114(2), 028701.

He, Y., She, Y., & Wu, D. (2013). Stationary-sparse causality network learning.
Journal of Machine Learning Research (JMLR), 14(1), 3073–3104.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 770–778).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 4700–4708).

Huang, K., Liu, Y., Zhang, Y., Yang, C., & Wang, Z. (2018). Understanding
cooperative behavior of agents with heterogeneous perceptions in dynamic
networks. Physica A. Statistical Mechanics and its Applications, 509, 234–240.

Huang, K., Wang, Z., & Jusup, M. (2018). Incorporating latent constraints to
enhance inference of network structure. IEEE Transactions on Network Science
and Engineering.

Huang, K., Zhang, Y., Li, Y., Yang, C., & Wang, Z. (2018). Effects of external forcing
on evolutionary games in complex networks. Chaos. An Interdisciplinary
Journal of Nonlinear Science, 28(9), 093108.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097–1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
Li, H.-J., Bu, Z., Li, A., Liu, Z., & Shi, Y. (2016). Fast and accurate mining the com-

munity structure: integrating center locating and membership optimization.
IEEE Transactions on Knowledge and Data Engineering, 28(9), 2349–2362.

Li, G., Wu, X., Liu, J., Lu, J.-a., & Guo, C. (2015). Recovering network topologies via
taylor expansion and compressive sensing. Chaos. An Interdisciplinary Journal
of Nonlinear Science, 25(4), 043102.

Liu, Y., Yang, C., Huang, K., & Wang, Z. (2019). Swarm intelligence inspired
cooperation promotion and symmetry breaking in interdependent networked
game. Chaos. An Interdisciplinary Journal of Nonlinear Science, 29(4), 043101.

Lyu, C., Liu, Z., & Yu, L. (2019). Block-sparsity recovery via recurrent neural
network. Signal Processing, 154, 129–135.

Mei, G., Wu, X., Wang, Y., Hu, M., Lu, J.-A., & Chen, G. (2018).
Compressive-sensing-based structure identification for multilayer networks.
IEEE Transactions on Cybernetics, 48(2), 754–764.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mousavi, A., Patel, A. B., & Baraniuk, R. G. (2015). A deep learning approach
to structured signal recovery. In The 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton) (pp. 1336–1343). IEEE.

Napoletani, D., & Sauer, T. D. (2008). Reconstructing the topology of sparsely
connected dynamical networks. Physical Review E, 77(2), 026103.

Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry
from a time series. Physical Review Letters, 45(9), 712.

Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M., & Moreno, Y. (2013).
Evolutionary dynamics of group interactions on structured populations: a
review. Journal of the Royal Society Interface, 10(80), 20120997.

Perc, M., & Grigolini, P. (2013). Collective behavior and evolutionary games-an
introduction. arXiv preprint arXiv:1306.2296.

Perc, M., & Szolnoki, A. (2008). Social diversity and promotion of cooperation in
the spatial prisoner’s dilemma game. Physical Review E, 77(1), 011904.

Perc, M., & Szolnoki, A. (2010). Coevolutionary games—a mini review. BioSystems,
99(2), 109–125.

Santos, F. C., & Pacheco, J. M. (2005). Scale-free networks provide a unifying
framework for the emergence of cooperation. Physical Review Letters, 95(9),
098104.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117.

Shen, Z., Wang, W.-X., Fan, Y., Di, Z., & Lai, Y.-C. (2014). Reconstructing
propagation networks with natural diversity and identifying hidden sources.
Nature Communications, 5, 4323.

Szabó, G., & Fath, G. (2007). Evolutionary games on graphs. Physics Reports,
446(4–6), 97–216.

Tang, W. K., Yu, M., & Kocarev, L. (2007). Identification and monitoring of
biological neural network. In IEEE International Symposium on Circuits and
Systems, 2007 (pp. 2646–2649). IEEE.

Tanimoto, J., Brede, M., & Yamauchi, A. (2012). Network reciprocity by coexisting
learning and teaching strategies. Physical Review E, 85(3), 032101.

Wang, W.-X., Lai, Y.-C., Grebogi, C., & Ye, J. (2011). Network reconstruction based
on evolutionary-game data via compressive sensing. Physical Review X, 1(2),
021021.

Wang, S., & Rahnavard, N. (2013). Binary compressive sensing via sum of l1-norm
and l (infinity)-norm regularization. In Military communications conference,
MILCOM 2013–2013 IEEE (pp. 1616–1621). IEEE.

Wang, L., & Wu, J. T. (2018). Characterizing the dynamics underlying global
spread of epidemics. Nature Communications, 9(1), 218.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature, 393(6684), 440.

Wu, X., Zhao, X., Lü, J., Tang, L., & Lu, J.-a. (2016). Identifying topologies of
complex dynamical networks with stochastic perturbations. IEEE Transactions
on Control of Network Systems, 3(4), 379–389.

Xu, Q., Su, Z., Zhang, K., Ren, P., & Shen, X. S. (2015). Epidemic information
dissemination in mobile social networks with opportunistic links. IEEE
Transactions on Emerging Topics in Computing, 3(3), 399–409.

Yu, W., Cao, J., Chen, G., Lu, J., Han, J., & Wei, W. (2009). Local synchronization of
a complex network model. IEEE Transactions on Systems, Man and Cybernetics,
Part B (Cybernetics), 39(1), 230–241.

Zachary, W. W. (1977). An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33(4), 452–473.

http://refhub.elsevier.com/S0893-6080(20)30085-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb2
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb3
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb3
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb3
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb3
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb3
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb4
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb4
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb4
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb4
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb4
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb5
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb5
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb5
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb6
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb6
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb6
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb6
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb6
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb7
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb8
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb8
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb8
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb9
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb10
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb11
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb11
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb11
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb13
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb13
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb13
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb13
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb13
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb14
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb15
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb15
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb15
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb15
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb15
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb16
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb17
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb18
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb19
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb19
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb19
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb19
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb19
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb20
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb21
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb21
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb21
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb21
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb21
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb22
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb22
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb22
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb22
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb22
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb24
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb24
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb24
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb24
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb24
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb25
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb26
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb26
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb26
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb26
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb26
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb27
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb27
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb27
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb27
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb27
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb28
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb28
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb28
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb28
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb28
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb29
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb29
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb29
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb30
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb30
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb30
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb30
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb30
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb32
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb33
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb33
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb33
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb34
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb34
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb34
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb35
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb35
http://arxiv.org/abs/1306.2296
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb37
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb37
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb37
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb38
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb38
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb38
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb39
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb39
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb39
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb39
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb39
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb40
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb40
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb40
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb41
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb41
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb41
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb41
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb41
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb42
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb42
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb42
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb43
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb43
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb43
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb43
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb43
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb44
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb44
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb44
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb45
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb45
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb45
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb45
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb45
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb46
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb46
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb46
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb46
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb46
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb47
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb47
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb47
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb48
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb48
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb48
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb49
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb49
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb49
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb49
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb49
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb50
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb50
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb50
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb50
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb50
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb51
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb51
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb51
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb51
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb51
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb52
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb52
http://refhub.elsevier.com/S0893-6080(20)30085-X/sb52

	SDARE: A stacked denoising autoencoder method for game dynamics network structure reconstruction
	Introduction
	Preliminaries
	Game dynamics in networks
	Compressive sensing
	Deep learning

	SDARE: SDA for network structure reconstruction
	Simulation results
	Evaluation metrics for network reconstruction
	Reconstruct artificial networks without noise
	Reconstruct artificial networks with noise
	Reconstruct empirical networks

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


